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1. Introduction

The analysis of atwospheric moisture remains a challenging problem in

data assimilation today. Relative humidity (RH) varies on horizontal scales

that are smaller than the typical separation distance of radiosondes over

Northern Hemisphere continents, and there are virtually no radiosonde measure-

ments over large portiors of the Southern Hemisphere and the Northern Hemi-

sphere oceans. Satellite observations may help to improve our knowledge of

the RH field.

Moisture information may be obtained from satellite sounding da-.- by re-

trieval techniques similar to those used for temperature retrievals, or by use

of cloudiness information contained in satellite imagery. Since moisture (and

temperature) retrieval, at least from infrared radiances, is difficult in

cloudy atmospheres, there is a possibility that inference of humidity data

from cloudiness information may successfully supplement moisture retrieval

from radiance data. Here we study the inference of humidity profiles from

cloud data, using the 3DNEPH data base as the source of the cloudiness inform-

ation. The 3DNEPH (now RTNEPH) is a high resolution cloud data base produced

operationally by the US Air Force ,Global Weather CentralJAFGWC). A coloca-

tion study of cloud data with radiosonde measurements of relative humidity is

used to develop and test a statistical method for inferring humidity profiles;

a global data impact study is used to assess the utility of this moisture in-

formation. In this report we review some of the 'reviously developed methods

for inferring humidity from cloud cover data, describe the data base and pro-

cessing used in our colocation study, and discuss the development and testing

of the new method for inferring humidity. We then describe the data impact

test and summarize our results and conclusions.

2. Background

Several different techniques for inferring relative humidity from cloud

information exist. They may be grouped into two categories: level-by-level

approaches, which use relationships between relative humidity and cloud cover

at a particular level or layer of the atmosphere, and profile apprcaches,

which infer vertical profiles of relative humidity from cloud information.



Of the level-by-level approaches, the one most widely used is described

in Chu and Parrish (1977). As implemented by Tibaldi (1982), humidity is de-

termined in the boundary layer (assumed to be 50 hPa thick) and three layers

in the troposphere between the boundary layer and 300 hPa from cloudiness ob-

servations (both from surface observers and satellite observations), using a

relationship of the form:

RH - M - A cos (r * q), (1)

where RH is the relative humidity, q the fractional cloud cover, and the coef-

ficients H and A depend on the humidity layer (see Appendix A).

The AFGWC uses humidity - cloudiness relationships within its 3DNEPH (now

RTNEPH) analysis program. As described in Fye (1978), relative humidity is

expressed in terms of a condensation pressure spread (CPS), which is the pres-

sure increment an air parcel needs to be lifted to reach saturation. The con-

densation spread is then related to cloud cover by an empirically derived

curve for each mandatory pressure level (see Appendix A).

Rasmussen (1982) used 3DNEPH data to derive multiple regression equations

relating mandatory level relative humidity to cloud information. Separate re-

gression equations were used for the different mandatory levels.

Relationships between relative humidity and cloud cover are also used

within the interactive radiation parameterizatiors of some prediction

models. For example, Geleyn (1981) describes one such relationship as

RH - RH 2
- max[O, 1 ] (2)

where the critical relative humidity RHc depends on pressure (see

Appendix A). The above relationship is easily inverted to obtain bogus humid-

ity from cloudiness.

Saito and Baba (1988) investigated level-by-ievel approaches in a coloca-

tion study over the western Pacific Ocean. The cloud cover data was derived

from infrared imagery observed by the GMS satellite. They arrived at a modi-

fied form of equation (2), in which a small but nonzero cloud cover was al-

lowed even for subcritical relative humidities.
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Norquist (1988) investigated several of these level-by-level approaches

in a global colocation study using 3DNEPH data. Based on a comparison of the

Tibaldi, AFGWC, and inverse ECMWF schemes, he found the Tibaldi method to have

the smallest errors. He demonstrated the potential usefulness of bogus RH

data inferred from 3DNEPH cloud cover data with data assimilation experiments

in which the bogus RH was used to replace RH data measured by radiosondes.

A potential problem with all of these level-by-level approaches is the

rather large uncertainty of the cloud height assignment in most cloud cover

data, which will lead to errors in cloud cover - relative humidity relation-

ships. In addition, cloud cover at a given level is related to moisture (.nd

other atmospheric variables) at other levels in some meteorological situa-

tions, most notably for the case of convective clouds. This problem is ad-

dressed by the profile approaches, which attempt to retrieve an entire vertic-

al profile of moisture from cloud cover data.

An example of the profile approach is the technique used at the Japanese

Meteorological Service and described in Kanamitsu (1984). Cloud information

including cloud cover, variability of cloud cover and cloud top are used to

identify one of 60 different categories, each of which is associated with a

typical relative humidity profile. The categories are defined a priori.

A similar approach was used by Mills and Davidson (personal communica-

tion, 1987), who used total cloud cover, the variance of cloud top tempera-

ture, and the height of maximum cloudiness to define categories with typical

RH profiles.

The aim of our regression study is to develop statistical methods to in-

fer RH profiles from the 3DNEPH cloud data base. We used the empirical ortho-

gonal functions (EOFs) of RH to determine the important features of the ob-

served RH profiles. The EOF coefficients were related tn colocated cloud data

by means of multivariate linear regression equations. The data used in the

regression study was restricted to the North American continent, resulting in

a homogeneous sample of high quality radiosonde measurements. The data base

is described in more detail in the next section. Accesion For
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3. Data Base and Processing

The data base used in the colocation study consists of radiosonde and

cloudiness data over North America during February and June of 1979.

The radiosonde data were extracted from the final, reprocessed FGGE II b

data set, and subjected to an additional quality control. Both mandatory and

significant level data were used. A total of 2699 (2235) ioundings, for 97

stations were extracted from the FGGE data set for 00 UTC, 5 February through

00 UTC, 22 February (00 UTC, 14 June through 00 UTC, 28 June). The location

of the radiosonde stations are shown in Fig. 1. A preliminary investigation

using mandatory pressure levels revealed a large number of missing values at

1000 hPa and 850 hPa, and a dependence of the RH profile, when defined with

respect to pressure levels, on station elevation. For these reasons, the

relative humidity data were interpolated from the pressure levels to a

terrain-following coordinate system, and an EOF analysis was performed on the

result. The coordinate system was a modified sigma coordinate:

a - (p-pt)/(ps-pt) , where pt - 300 hPa and Ps - surface pressure.

A total of 15 equally spaced levels were used between u-I and a-0.15. Only

soundings with enough measurements to allow this interpolation were used in

the EOF computations; this reduced the total number of soundings to 1918

(1724) for February (June). Given the EOFs, any relative humidity profile

(RHk, k - 1,15) may be expressed in terms of an EOF expansion as follows

15

RHk - RHk + em Em,k

m-1

where M k is the climatological mean RH profile, em the coefficient of the mth

hOF, and Emk the value of the mth EOF at level k. We computed the EOFs as

the eigenvectors of the relative humidity covariance matrix. Two separate

sets of EOFs were computed for each month, one (denoted EOF-All) based on the

covariance matrix about the mean of all radiosondes in the extracted data set

for each month, another (denoted EOF-Bands) based on the covariance matrix
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about the mean humidity profiles computed separately for three latitude bands

of width 10', spanning 20'N to 50°N. The mean profiles and associated stand-

ard deviations are shown in Fig. 2 for EOF-All, and Fig. 3 for EOF-Bands. Ex-

cept for the February means, differences between the band statistics are

small. The profiles of the first three EOFs are shown in Fig. 4 and 5 for

EOF-All and EOF-Bands, respectively. The leading EOFs are similar for Feb-

ruary and June; EOF-All and EOF-Bands have basically the same structure. The

amount of variance explained by these EOFs is shown in Table 1. In comparing

numbers for EOF-AII and EOF-Bands one must bear in mind that the total amount

of variance about the mean is somewhat smaller for EOF-Bands than EOF-AIl.

Table 1: Percent of variance explained by the RH EOFs. EOF-All and EOF-Bands
refer to the EOFs defined with respect to latitude-independent and
latitude-dependent mean RH profiles, respectively.

February I June
EOF No, I EOF-AII EOF-Bands I EOF-AlI EOF-Bands

1 54.4 51.5 44.6 45.1
2 22.6 23.4 21.6 21.1
3 8.0 8.7 10.4 10.5
4 4.9 5.3 7.0 6.7
5 2.9 3.2 4.4 45
6 1.9 2.1 2.8 2.9
7 1.3 1.4 2.2 2.3
8 1.0 1.1 1.7 1.7
9 0.8 0.8 1.2 1.2
10 0.6 0.6 1.0 1.0
11 0.4 0.5 0.8 0.8
12 0.4 0.4 0.7 0.7
13 0.3 0.4 0.6 0.6
14 0.3 0.4 0.5 0.5
15 0.3 0.3 0.3 0.3

The cloudiness data base used for this study is the Air Force 3DNEPH

analysis. The 3DNEPH data set is a global gridded data set with a resolution

of 47.6 km on a polar stereographic grid (the so-called 8th-mesh grid). The

grid for each hemisphere is subdivided into 64 boxes, each of which contains

64x64 gridpoints. The data at each gridpoint consist of percent cloud cover

for total sky cover and for 15 layers in the vertical, as well as several

other parameters (cloud type, base and top heights, terrain height, and pres-

s



ent weather; see Appendix B for a detailed description of the parameters and

their recoding for this colocation study). In addition, a vertically com-

pacted set of cloud cover values, which correspond to boundary layer clouds

and cloud cover for layers surrounding the 6 mandatory levels between 1000 hPa

and 300 hPa were derived from the 15 layer values. The vertical compaction,

described in more detail in Appendix B, reduces the data volume without a sig-

nificant loss of information since the cloud cover values in the 15 3DNEPH

layers are partially redundant. The 3DNEPH data is derived primarily from IR

and visible satellite imagery, and supplemented with conventional surface,

radiosonde, and aircraft reports. For the present study we extracted 3DNEPH

data for the gridpoints closest to the extracted radiosonde stations; in addi-

tion to the values at the gridpoint itself (refe:red to in the following as

central values), the neighboring 24 points were used to compute means and

standard deviations. Data were extracted for the 3DNEPH boxes 43, 44, and

45. The 69 sounding locations that fall within the extracted 3DNEPH boxes are

shown in Fig. 1 as stars.

4. Regression Study

The data base described in the previous section was used to develop and

test a new method to infer a RH profile from 3DNEPH data. The data set for

each month was subdivided into a dependent and independent sampli; the former

was used to develop multiple regression equations for the EOF coefficients of

relative humidity, the latter was used to validate the regression equations

and to compute error statistics of the bogus RH data.

The dependent sample for February, which covers data from 00 UTC 5

February 1979 to 12 UTC 16 February 1979, was used for some exploratory, uni-

variate correlation calculations between 3DNEPH data and EOF coefficients.

Aside from identifying the most promising-looking predictors from the 3DNEPH

data set, these computations were used to assess the effect of stratifying the

sample into various subsets. One such stratification, based on the time of

day, showed correlation coefficients to be consistently hij.her for the 00 UTC

sample than for the 12 UTC, or the aggregate 00 UTC and 12 UTC sample. Con-

trol runs using a random subsample showed these differences to be signifi-

cant. The most likely reason is that the cloud data over the U.S. are more

reliable and less noisy at 00 UTC, because the primary data source of the
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3DNEPH is IR imagery and in the late afternoon the temperature contrast be-

tween the land surface and the cloud tops is greatest.

Correlation coefficients between one of the 3DNEPH variables and the co-

efficients of either EOF 1 or 2 showed no consistent differences between lati-

tude bands (30°-40°N and 40°-50°N); similar correlation coefficients for EOF 3

were nonzero only in the 30°-40°N sample. Finally, these correlation coeffi-

cients of EOF I and 2 were consistently higher for the horizontally averaged

3DNEPH values than the corresponding central values, while the standard devia-

tions of the 3DNEPH variables showed no useful correlations at all.

A stepwise regression procedure was used to derive multiple regression

equations for the coefficients of EOF 1 and 2. Stepwise regression is a meth-

od for determining the "best" set of predictors (Neter and Wasserman, 1974,

Chapter 11; Draper and Smith, 1966, Chapter 6). In our case, some of the

3DNEPH data have large biases or random observational errors and many of the

variables are intercorrelated. We have the original data, the vertically com-

pacted data, as well as the local area average and variance of the original

and vertically compacted data. On the dependent sample, we are sure to ex-

plain more of (.he variance of the EOF coefficients for each predictor we add

to our regression equations. However, using all potential predictors is sure

to overfit the data, resulting in poorer performance on the independent sam-

ple. Therefore we must employ some means of deciding which predictors to use.

The stepwlse regression procedure iteratively adds and deletes variables

from the prediction equation. At each step, all possible predictors not yet

included in the regression are co'-idered for inclusion. The one reducing the

unexplained valiance the most is added to the regression if this reduction in

variance is significant, as judged by the coefficient of partial correlation,

which is a type of F statistic (op. cit.). Since the predictor added may be

highly correlated with a previous predictor, all current predictors are con-

sidered for deletion. The predictor having the smallest partial correlation

is deleted if the associated reduction in variance is so small as to be insig-

nificant. The iteration stops when no further changes are made. The algo-

rithm we used is based on that of Efroymson (1960). Based on the exploratory,

univariate correlation statistics, some preliminary choices of predictors were

made: In order to uc the best av. ilable data for the development of the mul-

7



tiple regression equations, only 00 UTC data was used; multiple regression

equations were based on the horizontal mean values only (tests of multiple re-

gression equations using central values resulted in less skillful predictions

of the EOF coefficients); multiple regression equations for EOFs 1 and 2 were

developed without any stratification based on latitude. The multiple regres-

sion equation for EOF 3 for the 30°-40°N latitude band was able to expl.in

only 30% of its variance. Since EOF 3 only contributes a small amount of the

RH variance, its prediction was not pursued further. Two separate regression

equations were developed for each EOF, one using only the vertically compacted

-.ioud cover data, and another using all mean 3DNEPH variables. In the latter

case, cloud cover data for 3DNEPH layers were added to the predictor sets by

the stepwise regression algorithm only after the vertically compacted predict-

ors were exhausted. The corresponding increases in the amount of the explain-

ed variance were rather modest, however, because of high correlations between

the vertically compacted and the layer data. An example of this is shown in

Fig. 6: scatterplots of EOF I coefficients versus cloud cover in layer 10

show a relatively high correlation, whereas the residuals from the regression

equation using the vertically compacted data are already much less correlated,

and including layer 10 cloud cover in the regression then removes the remain-

ing correlation. Table 2 shows the predictor sets and the fraction of the ex-

plained variance (r2 ) for the coefficients of EOF I and 2, both for the global

mean and latitude-dependent mean (EOF-AlI and EOF-Bands), for February and

June. We note that the r2 values are slightly lower for EOF-Bands than

EOF-AlI.

An evaluation of these regression equations was performed both for the

dependent sample and the independent sample. For a comparison of the regres-

sion equation and existing methods of estimating humidity the bogus RH pro-

files were interpolated from the a-coordinate system to mandatory pressure

levels. For the purposes of interpolating, RH wds assumed to vary linearly as

a function of the logarithm of pressure. The interpolated bogus RH profiles

were then compared with colocated RAOB data, along with bogus RH obtained by

existing methods. Bias and rmse statistics were computed over all colocated

3DNEPH data points, even if Lhe cloud cover used in the inference was zero; to

reduce the positive bias likely to result from this procedure, the bogus

humidity predicted by the existing methods was modifid to be no higher than

climatology in cases of zero cloud cover. A recalculation of the statistics,

8



Table 2: Predictor sets and r2 for the regression equations. Results are

shown separately for EOF I and 2. The predictor set of the verti-

cally compacted set is shown first, additional 3DNEPH data of the

second regression equation are shown in the second column; v denotes

cloud cover, r the fraction of variance explained by the

regression.

Vertically compacted data Full 3DNEPH data set
Regression22

equation I Predictors r I Predictors I r2

E0F-All at 850, 700, 500 hPa In at layer 10
February 1.554 1 .568

EOF-Bands at 700, 500, 400 hPa n at layer 10
February 1.514 1.530

EOF-AId N at 700, 400 hPa In at layer 15
June 1.610 1 .623

EOF-Bands at 700, 400 hPa I I at layer 151

June 1.606 1 1.618

EOF2:

EOF-AlI in at 850, 700 In at layer 9
February I 500, 300 hPa 1.413 I .434

EOF-Bands IN at 850, 700 in at layer 9
February j 500, 300 hPa j.394 1 1.414

I
EOF-AlI Iterrain height I In at 700 hPa I
June Iq at 850, 500 hPa I layer 8, 12 1

1.333 low cloud type 1.484

1 1
EOF-Bands Iterrain height I In at layer 8,12 1
June In at 700, 400 hPa 1.328 low, middle cloud type 1.481

excluding all cases in which cloud cover values used as predictors were less

than 10% showed that the results were not significantly affected by the use of

cases with zero cloud cover.

Table 3 shows the RMS error and bias of three existing methods for the

time period corresponding to the dependent sample in February. The smaller

9



sample stzes at the 1000 hPa and 850 hPa levels shown in Table 3 are due to

observations with small surface pressures, i.e. high station elevation. As an

indepenen-t reference, errors associated with climatology are shown as well;

climatology is defined here as the average over all radiosonde observations in

the extracted set within the 3DNEPH boxes, computed separately for each

month. Errors for the GWC and Tibaldi method are roughly comparable; V-"th me-

thods show some skill when compared to climatology. The inverse ECMWF formula

suffers from a rather large bias. The corresponding statistics for the bogus

RH profiles based on the regression equations for EOFs I and 2 are shown in

Table 4. The smaller sample sizes at the 400 hPa level shown in Table 4 are

caused by observations with surface pressure of above 967 hPa, for which the

top sigma level is below 400 hPa. It can be seen that the regression equa-

tions result in smaller errors than the existing methods; differences between

the different regression equations, i.e. those for EOF-All or EOF-Bands, and

those using the vertically compacted or the full 3DNEPH data set are generally

small.

Table 3: Bias and RMS errors for the existing methods, for the dependent
sample in February. The sample sizes for each statistic are shown in
parentheses. The ror labeled "Average" is an unweighted average of the
level values.

inverse
AFGWC Tibaldi ECMWF Climatology

J Bias RMSE I Bias RMSE I Bias RMSE Bias RMSE

1000 hPa 12.01 17.87 12.03 17.71 35.32 40.96 7.36 21.49
(82) (82) (82) (211)

850 hPa 8.85 26.09 12.45 27.69 19.69 31.02 5.71 32.45
(276) (276) (276) (440)

700 hPa 14.44 31.50 12.30 30.18 25.08 37.31 2.47 33.28
(302) (302) (302) (470)

500 hPa 1.21 26.13 3.92 26.21 23.35 34.48 -.77 31.61
(303) (303) (303) (468)

400 hPa -5.33 23.24 4.25 23.48 28.05 37.33 -2.50 28.89
(303) (303) (303) (468)

Average I 6.24 24.97 I 8.99 25.05 I 26.48 36.22 I 2.45 29.54

10



Table 4: As Table 3, but for the regression equations. Set I and 2 refer to
the vertically compacted and the full 3DNEPH data set, respectively; EOF-
All and EOF-Bands denote EOFs based on latitude-independent and latitude-
dependent mean RH profiles, respectively.

EOF-All, set 1 EOF-All, set 2 EOF-Bands,set I EOF-Bands,set 2
Bias RMSE j Bias RMSE j Bias RMSE j Bias RMSE

1000 hPa 10.83 18.80 10.53 18.72 9.37 18.07 9.14 18.12
(82) (82) (82) (82)

850 hPa 2.13 23.27 1.99 23.07 1.43 22.46 1.36 22.38
(276) (276) (276) (276)

700 hPa -.77 26.58 -1.18 26.36 -1.00 26.28 -1.21 25.82
(289) (289) (289) (289)

500 hPa 1.31 25.44 .69 25.28 1.03 25.06 .63 24.96
(291) (291) (291) (291)

400 hPa 4.20 22.40 2.78 22.88 6.17 21.94 5.18 22.44
(106) (106) (106) (106)

Average I 3.54 23.30 j 2.96 23.26 I 3.40 22.76 I 3.02 22.75 I

Table 5 and Table 6 show the verification statistics for the independent

sample in February, which covers the period from 00 UTC, 17 February, through

00 UTC, 22 February. Because of the small differences between the regression

equations using the vertically compacted and the full 3DNEPH data set, only

the results for the former are shown here. The results are qualitatively the

same for the two sanples in February. As is to be expected, the errors for

the regression equations are somewhat larger for the independent than the de-

pendent sample, but they are larger for the existing methods, as well.

II



Table 5: As Table 3, except for the independent sample in February.

inverse
AFCWC Tibaldi ECMWF Climatology

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1000 hPa 2.29 17.78 2.65 17.20 26.10 32.72 -7.74 20.80
(104) (104) (104) (230)

850 hPa 12.76 29.03 15.65 27.27 23.10 35.03 1.56 33.51
(254) (254) (254) (412)

700 hPa 20.59 34.14 16.94 32.33 30.97 41.38 4.44 33.59
(296) (296) (296) (457)

500 hPa -7.90 27.55 11.17 29.26 29.84 39.52 4.65 32.06
(288) (288) (288) (458)

400 hPa -3.46 27.63 7.58 27.50 30.49 41.49 -.23 29.96
(298) (298) (298) (469)

Average I 8.14 27.22 j 10.80 27.59 I 28.10 38.03 j 0.54 29.98I

Table 6: As Table 4, except for the independent sample ini February. Results
are shown for the regression equations based on the vertically
compacted 3DNEPH data set only.

EOF-AlI EOF-Bands
Bias RMSE I Bias RMSE

1000 hPa -1.01 17.81 -1.75 18.35
(104) (104)

850 hPa 3.81 25.39 3.79 26.44

(254) (254)
700 hPa 5.36 26.60 5.01 27.31

(284) (284)
500 hPa 7.86 25.87 7.21 25.33

(276) (276)
400 hPa 5.26 24.93 4.39 23.76

(71) (71)

Average 4.26 24.12 I 3.73 24.24 I

The error statistics for the existing methuds computed here can be com-

pared to the results obtained by Norquist (1988) in his global colocation

study for February of 1979. His results are similar in that the errors of the
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AFGWC and Tibaldi m~thods are roughly comparable, with slightly smaller errors

for the Tibaldi method. In general, his zesults show somewhat smaller errors

for all three methods, except for the AFGWC method at 400 hPa, which shows

smaller errors in our results. The positive bias of the inverse ECKWF method

found here is consistent with his results, and also consistent with the re-

sults of Saito and Baba (1988).

Tables 7 and 8 contain the verification statistics for the independent

sample in June, which covers the period 12 UTC, June 17, through 00 UTC, June

24. They show a smaller variance about climatology than for February, in

agreement with the results shown in Fig. 2. The errors for the existing

methods, on the other hand, show little change compared to February, resulting

in only marginal or no skill over climatology for the AFGWC or the Tibaldi

method. The errors of the regression equations are smaller for June than for

February, and they are consistently smaller than those of climatology or the

existing methods.

Table 7: As Table 5, but for the independent sample in June.

inverse
AFGWC Tibaldi ECMWF Climatology

Bias RMSE I Bias RMSE j Bias RMSE I Bias RMSE

1000 hPa 6.82 16.95 2.72 15.34 27.68 33.35 -3.31 17.62
(118) (118) (118) (298)

850 hPa 8.16 21.47 7.50 21.70 17.15 25.59 -2.06 23.38
(540) (540) (540) (774)

700 hPa 20.20 30.90 15.74 28.29 30.06 38.10 4.11 27.31
(585) (585) (585) (809)

500 hPa 14.77 27.44 19.99 31.21 34.80 42.09 14.59 30.26
(564) (564) (564) (784)

400 hPa 10.84 25.09 22.76 31.90 39.03 46.45 16.88 28.89
(584) (584) (584) (804)

Average I 12.16 24.37 I 13.74 25.69 I 29.74 37.12 I 6.04 25.49 I
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Table 8: As Table 6, but for the independent sample in June.

EOF-AII EOF-Bands
Bias RMSE Bias RMSE

1000 hPa -2.57 16.13 -4.06 16.04
(118) (118)

850 hPa -6.51 20.88 -6.30 20.80
(540) (540)

700 hPa -5.54 26.06 -4.79 25.88
(557) (557)

500 hPa 3.95 23.60 3.52 23.55
(539) (539)

400 hPa 7.82 22.65 8.06 22.63
(196) (196)

Average I -.57 21.87 I -.71 21.78 I

In summary, we identified regression equations for the first two EOFs of

relative humidity; several different possibilities were investigated which

differed in the definition of the RH EOFs and in the subset of the 3DNEPH data

considered as predictors. Based on tests using the dependent and independent

samples, it was found sufficient to use regression equations for the coeffi-

cients of EOF-AII, i.e. the EOFs based on the mean RH profile computed for all

latitudes between 20° and 50°N, and to use the vertically compacted, horizon-

tally averaged 3DNEPH data set. Comparison with existing level-to-level me-

thods for inferring R- from cloud cover showed the regression equations to

perform better for both the dependent and independent samples. It should be

noted that the verification was performed over the same geographical region

for which the regression equations were developed, and that no attempt was

made to tune the existing methods to improve their performance. The compari-

son with the level-to-level methods was performed primarily to provide some

independent reference point for the errors associated with the regression

equations, and to demonstrate the feasibility and potential utility of the

approach.

5. Data Impact Study

The method for inferring relative humidity from 3DNEPH data described in

the previous section was used in a data impact study using the global data as-

similation system (GDAS) of the Air Force Geophysics Laboratory (AFGL). The

AFGL GDAS consists of three major components: a global spectral forecast model
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(GSM), an optimum interpolation analysis (01), and a nonlinear normal mode

initialization (NMI). The global spectral model is based on the NMC GSM de-

signed by Sela (1980); the physics routines were taken almost intact from NMC

(circa 1983), whereas the hydrodynamics were completely redesigned (Brenner et

al., 1982, 1984). The optimum interpolation analysis was developed by

Norquist and others (Norquist, 1982b, 1983, 1984, 1986; Halberstam et al.,

1984), and was originally based on the 01 procedures described in Bergman

(1979) and McPherson et al. (1979). The normal mode initialization was based

on the NMC NMI (Ballish, 1980) and is described in Norquist (1982a) and Tung

(1983).

The design of the data assimilation experiment closely follows that de-

scribed in Louis et al. (1987). An assimilation experiment consists of as-

similation runs for two 7-day periods in the Special Observing Periods (SOPs)

of the FGGE year: February 8 through 15, 1979, and June 17 through 24, 1979.

Each assimilation run consists of a series of assimilation cycles using a 6

hour update cycle. Forecasts out to 4 days were produced from the initialized

analyses at days 3, 5, and 7 of the assimilation runs. The assimilation pe-

riod of the June assimilation run is identical with the independent sample for

that month used in our colocation study. In February, the data assimilation

period overlaps the dependent sample used in the regression study.

In this section we will present mostly differences between an assimila-

tion experiment using the 3DNEPH based bogus RH data (referred to as NEPHSAT),

and a control assimilation experiment using only the standard FGGE data set

(STATSAT). The only moisture data used in STATSAT were radiosonde observa-

tions; for an in-depth discussion of the control run the reader is referred to

Louis et al. (1987). The 01 analysis program had undergone some miior changes

between the STATSAT and NEPHSAT experiments: Changes were made to the quality-

control procedures of drop-windsonde data, and to the procedures to solve the

normal equations of the analysis program (Hoffman et al., 1988). This impact

test differs from the one reported in Norquist (1988), in which bogus RH data

was used to replace, rather than supplement, radiosonde measurements. The

present OSE is designed to test whether the potential impact demonstrated by

Norquist can be observed in a more realistic simulation of the operational

environment.
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The 3DNEPH based bogus RH data were generated for all half-mesh points

located between 30*N and 50'N (since only those latitudes were used in the

derivation of the regression equations); the error statistics for these data,

which are needed as input to the moisture 01, were generated from the inde-

pendent sample of the colocation study (see Appendix C for details).

The impact of the 3DNEPH data is most clearly seen in Fig. 7, which shows

differences of analyzed RH at 850 hPa between NEPHSAT and STATSAT for the

February assimilation run. The first analysis produced in February (February

8 at 06Z) shows differences to be essentially confined to the region influ-

enced by the 3DNEPH data, i.e. 30°-50°N; an exception to this are the high

latitude regions of both hemispheres, where sizable differences occur, due

most probably to differences in the 01 program between the two experiments.

As is obvious from the succeeding panels in Fig. 7, the differences within the

30°-50°N latitude band as well as outside it grow with time. By 12Z on

February 10, i.e. after 2 1/2 days of assimilation, the RH differences have

spread over the entire globe, with the largest differences occurring at high

latitudes; at that time, the region where bogus RH data were used in NEPHSAT

is no longer visibly different from the rest of the world in these difference

maps. This fairly rapid growth and spread of the RH differences indicate that

the impact of the 3DNEPH data is within the noise level of the system, since

the initial differences are clearly caused by both the different input data

and the different analysis programs. During the early part of the assimila-

tion run, however, the RH differences within the 30°-50°N latitude band can be

related to the cloudiness data used in NEPHSAT. Plots of the 700 hPa cloud

cover (Fig. 8), which is the predictor with most influence on bogus RH data

for the 850 hPa level, reveal some areas of little cloud cover. particularly

over the middle and East Atlantic, which correspond to areas where the 850 hPa

NEPHSAT analyses are drier than the control.

The analyses of geopotential height are quite similar in the two experi-

ments. During February, differences in the Northern Hemisphere are localized

and of small amplitude (less than 100 m at 500 hPa, 150 m at 1000 hPa)

throughout the entire assimilation run; in the Southern Hemisphere, large amp-

litude, small scale difference are evident near the pole, which are the re-

suit of the differences in the analysis programs and not related to the use of

bogus RH data.
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To assess the quality of the analyses and the forecasts produced from

them, colocation statistics between the gridded fields and a set of verifying

radiosonde observations were computed. The radiosonde observations used in

the regression study were extracted from this data set. Fig. 9a shows the

global rms error of relative humidity for NEPHSAT and STATSAT analyses and

forecasts for February. Although the NEPHSAT errors are slightly smaller than

those of STATSAT for most of the analyses, these differences (NEPHSAT-STATSAT)

are smaller than the day-to-day variations of the analysis differences

(analysis-RAOB). The forecasts do not indicate one to be superior to the

other. The same general conclusions hold if one computes these statistics of

just the Northern Hemisphere extratropics, or even just over North America

(Fig. 9b and c), where the beneficial impact of the 3DNEPH data would be ex-

pected to be largest. Comparing the magnitudes of the rms errors shown in

Fig. 9 with those of Table 6 might explain part of the reason fvr this appar-

ent lack of improvement: the typical analysis errors are smaller than, and the

typical 12-hour forecast errors are only slightly larger than, the colocation

errors of the bogus RPH data. The quality of the bogus RH data is thus compar-

able to that of the first guess, resulting in only a small positive impact

even in radiosonde-void regions. The generally inconclusive results of the

850 hPa radiosonde statistics hold for other levels, as well.

The results from the June assimilation run are quite similar to those for

February. Difference maps of RH, shown in Fig. 10, reveal the impact of the

cloud data in the first analysis time periods, along with large diffferences

near the South Pole, which are related to the different analysis program. As

was the case in February, the differences spread quickly over the entire

globe, until at day 2 1/2 the region with cloud data input is no longer dis-

tinguishable from the rest of the globe. The 3DNEPH cloud cover data shown in

Fig. 11 shows some features that can be related to the RH differences, in par-

ticular an area of positive RH differences and high values of cloud cover at

150°W.

The radiosonde statistics for the June assimilation also give no clear

indication that the NEPHSAT forecasts have smaller RH errors than the-c cf

STATSAT.
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6. Summary and Conclusions

Based on a colocation study of radiosonde RH measurements and 3DNEPH

cloudiness data over North America, we developed regression equations for the

first two EOFs of relative humidity. The regression equations predict the co-

efficients of EOF-All, i.e. the EOFs based on the mean RH profile computed for

all latitudes between 200 and 50°N, from the vertically compacted, horizont-

ally averaged 3DNEPH data set. The regression equations performed better than

existing level-to-level methods for inferring RH from cloud cover. Although

the verification was performed over the same geographical region for which the

regression equations were developed, and no attempt was made to tune the

existing methods to improve their performance, this comparison establishes the

feasibility of the approach.

The utility of the bogus RH data for operational data assimilation was

investigated in a global observing system experiment, in which bogus RH data

were supplied to the moisture analysis in the 30°-50°N latitude belt. The im-

pact of the 3DNEPH data was evident in analyses in the early part of the as-

similation runs; at later times, it was more difficult to separate the effects

of the bogus RH data from other differences between the NEPHSAT and control

OSE. Comparisons of the analyzed and forecast RH with verifying radiosonde

data did not indicate a measurable positive impact of-the bogus RH data. The

inconclusive results from this OSE should not be regarded as definitive, how-

ever; we address the reasons for the lack of positive impact, and suggest pos-

sible extensions to the present study in the following.

One of the obvious shortcomings of the present OSE is the limited geo-

graphical extent of the bogus RH data. In future studies, the RH profile ap-

proach could be extended to produce a global bogus RH data set by repeating

the regression study performed here for different regions cf the globe. Dif-

ferent EOFs, and different regression equations would then be used in dif-

ferent regions.

Other limitations of the OSE are related to the data assimilation system

itself. Among those the relatively coarse resolution of the analysis and

forecast, the use of an adiabatic NMI, and of a very simple moist physics

package in the GSM are the most significant obstacles to an effective assimil-

ation of moisture data. There are several potential remedies to these short-
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comings: using a diabatic NMI, in conjunction with a moisture spinup procedure

as suggested in Donner (1988) would minimize the rejection of initial moisture

data by the forecast model. Improvements to the physics package of the GSM

are also necessary to limit the error growth during the assimilation cycle and

the longer range forecasts produced from the analyses; the physics package

currently being implemented and tested by AFGL is expected to improve this as-

pect of the GDAS.

Perhaps the most serious limitation to the usefulness of the data are the

relatively large observation errors of the bogus RH, which are larger than the

globally averaged errors of the current RH analyses. Even with the current

error levels, however, some beneficial impact should be realizable in other-

wise data-void areas. It may also be possible to reduce the errors of the

bogus RH data with changes in the regression approach, such as the definition

of the EOFs or the preprocessing of the cloud data. However, for significant

reductions of the observation errors, it will be necessary to take account of

the fact that there is no one-to-one correspondence between relative humidity

and cloud cover, and to include other atmospheric parameters (e.g., static

stability, vertical motion) in the problem.
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Appendix A: Existing cloudiness to humidity conversion techniques

Three existing methods of estimating relative humidity on mandatory pres-

sure levels were implemented in our colocation study. All three methods were

used with the horizontal mean values of the vertically compacted 3DNEPH cloud

cover corresponding to each mandatory pressure level. In cases of zero cloud

cover, the smaller of the critical relative humidity and climatology was used

as the bogus RH. In the case of the Tibaldi and inverse ECMWF methods, which

require knowledge of the surface pressure, the surface pressure of the co-

located radiosonde observation was used.

A.1 Tibaldi Mthod

Equation (1) was applied to four humidity layers j=l,4, where the layers

are defined bi pj ! p ! Pj+I' with the pj and the coefficients Mj, Aj given in

Table A.l.

Table A.l: Parameters of the Tibaldi method

jpj [Mj [Aj

i Psurface .80 .20

2 P, - 50 hPa .75 .15

3 P2  - (P2 -p5 )/3 .60 .15

4 P3  - (P2 -p5 )/3 .55 .10 1

5 300 hPa

A.2 AFGWC method

This method is based on empirical relationships between the cloud cover

and the condensation pressure spread (CPS), which are defined for the man-

datory pressure levels 850, 700, 500, and 300 hPa (Table A.2; see Norquist,

1988, for a graphical display of the curves). We used the 850 hPa curve at

1000 hPa and the average of the 500 and 300 hPa curves at 400 hPa. The CPS is

related co the dew-point depression (DPD) through the approximate

relationship:
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DPD - CPS /(a 0 + al(p/p0 ) + a2 (P/P,) 2

where po-lOOO hPa, ao-4.9 hPa/K, a,-.93 hPa/K, and a2-9 hPa/K. To convert the

dew point depression to relative humidity, the temperatures of the colocated

radiosonde were used.
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Table A. 2

Values of condensation pressure spread (CPS, in hPa) as a function of cloud
cover, for the mandatory pressure levels at 850, 700, 500, and 300 hPa. The
entry in a particular row and column of these tables is the CPS corres-
ponding to the cloud cover (in %) obtained by adding the labels of the row
and column; e.g., the entry in the first column of the second row corres-
ponds to 11% cloud cover.

P - 850 hPa
1 2 3 4 5 6 7 8 9 10

0 114.2 111.3 108.5 105.8 103.2 100.7 98.2 95.7 93.2 90.7
10 88.0 85.2 82.5 80.0 77.5 75.2 73.2 71.3 69.6 68.1
20 66.6 65.2 63.9 62.5 61.1 59.6 58.0 56.6 55.3 54.2
30 53.1 52.0 51.0 50.0 49.1 48.3 47.4 46.6 45.8 45.0
40 44.2 43.4 42.6 41.8 41.0 40.2 39.4 38.6 37.8 37.0
50 36.2 35.4 34.8 34.4 34.0 33.7 33.3 32.9 32.6 32.3
60 31.9 31.5 31.1 30.7 30.2 29.7 29.2 28.7 28.3 27.9
70 27.5 27.1 26.7 26.2 25.7 25.2 24.7 24.2 23.7 23.1
80 22.5 21.9 21.2 20.4 19.5 18.5 17.5 16.6 15.6 14.6
90 13.6 12.5 11.4 10.3 9.1 7.6 5.9 4.3 2.7 1.0

P - 700 hPa
1 2 3 4 5 6 7 8 9 10

0 107.2 105.0 102.8 100.8 98.9 97.5 96.2 95.0 93.9 92.8
10 91.7 90.6 89.5 88.3 86.8 85.0 83.0 81.0 79.0 77.0
20 75.2 73.4 71.6 69.9 68.3 66.8 65.3 63.9 62.5 61.2
30 60.0 58.7 57.4 56.2 55.1 54.0 52.9 51.8 50.7 49.7
40 48.8 47.9 47.0 46.1 45.3 44.5 43.7 42.8 42.0 41.3
50 40.7 40.3 39.9 39.6 39.3 38.9 38.6 38.2 37.9 37.6
60 37.2 36.8 36.4 36.0 35.6 35.1 34.7 34.2 33.8 33.3
70 32.8 32.2 31.7 31.2 30.7 30.2 29.7 29.1 28.5 28.0
80 27.5 27.0 26.4 25.8 25.1 24.3 23.4 22.4 21.3 20.0
90 18.7 17.4 16.0 14.6 13.2 11.6 9.8 7.4 4.5 1.0

P - 500 hPa
1 2 3 4 5 6 7 8 9 10

0 100.2 99.4 98.6 97.8 97.0 96.2 95.4 94.5 93.7 92.9
10 92.1 91.4 90.6 89.5 88.3 87.0 85.7 84.3 82.9 81.2
20 79.4 77.7 76.0 74.4 72.8 71.5 70.5 69.5 68.5 67.6
30 66.7 65.8 65.0 64.1 63.1 62.1 61.1 59.8 58.2 56.4
40 54.4 52.6 51.3 50.3 49.6 48.9 48.3 47.6 46.9 46.2
50 45.5 44.8 44.1 43.4 42.7 42.0 41.3 40.8 40.4 40.0
60 39.6 39.2 38.8 38.4 38.0 37.6 37.2 36.8 36.3 35.9
70 35.5 35.0 34.6 34.2 33.7 33.3 32.8 32.1 31.4 30.7
80 29.9 29.0 28.1 27.2 26.2 25.1 24.0 22.9 21.8 20.7
90 19.6 18.3 16.9 15.3 13.4 11.4 9.4 7.4 5.0 1.0

P - 300 hPa
1 2 3 4 5 6 7 8 9 10

0 96.2 95.4 94.6 93.9 93.1 92.3 91.4 90.5 89.7 88.9
10 88.0 87.1 86.4 85.7 85.1 84.5 83.7 82.8 81.7 80.4
20 79.0 77.5 75.9 74.3 72.9 71.6 70.4 69.4 68.4 67.5
30 66.7 65.8 64.9 64.0 63.1 62.2 61.2 59.8 58.2 56.4
40 54.8 53.5 52.2 51.1 50.1 49.2 48.4 47.6 46.9 46.2
50 45.5 44.8 44.1 43.4 42.7 42.0 41.3 40.8 40.4 40.0
60 39.6 39.2 38.8 38.4 38.0 37.6 37.2 36.8 36.3 35.8
70 35.4 35.0 34.6 34.2 33.8 33.3 32.8 32.2 31.5 30.6
80 29.7 28.8 27.9 27.0 26.1 25.1 24.0 23.0 21.9 20.7
90 19.5 18.3 16.9 15.3 13.4 11.4 9.4 7.4 5.0 1.0
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A.3 Inverse ECMWF method

Equation (2) was inverted to yield

RH - RH c + 171/2 / (I - RHc

where RH (relative humidity) and n (cloud cover) are dimensionless, a"'d RHcI,

the critical RH is given by

RHc - 1 - aa' (1-a') (1 + p(a'-I/2) )

with a'-p/ps, a-2, and 0-3

Appendix B: The 3DNEPH data base

The 3DNEPH analysis as described in Fye (1978) provides the following

data at each grid point: terrain height (in tens of meters), total cloud

cover (to the nearest percent), cloud cover for 15 layers (to the nearest 5

percent), minimum cloud base and maximum cloud top ( in WMO code 1677),

cloud type for low, middle, and high clouds (in AFGWC codes), and present

weather (in WMO code 4677, divided by 10). The vertical structure of the

3DNEPH layers is shown in Table B.I.

Table B.1
Vertical Structure of the 3DNEPH layers.

Adapted from Fye (1978)

Compacted
Layer Number Upper Boundary Height (m) Layer

Surface

1 46 ACL LOW
2 91 AGL LOW
3 183 AGL LOW
4 305 AGL LOW
5 610 AGL i000 hPa
6 1067 AGL/MSL 1000 hPa
7 1524 MSL 850 hPa
8 1981 MSL 850 hPa
9 3048 MSL 700 hPa

10 4267 MSL 700 hPa
11 5486 MSL 500 hPa
12 6706 MSL 500 hPa
13 7925 MSL 400 hPa
14 10668 MSL 300 hPa
15 16764 MSL 300 hPa
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Of these, all but the present weather information were used in the co-

location stud,. Some recoding was performed to allow a quantitative analy-

sis. Cloud cover values that denoted "thin clouds" were set to zero unless

they were at layers 13 or above. The minimum cloud base and maximum cloud top

codes were converted to heights in meters. The cloud type information was re-

coded such that missing information, i.e. no clouds, was assigned a value of

zero, cumuliform cloud types a value of 10, mixed cumuliform and stratiform

cloud types a value of 15, and stratiform cloud types a value of 20. Ver-

tically compacted cloud cover values were computed assuming maximum overlap;

the 3DNEPH layers assigned to the compacted cloud cover layers are shown in

Table B.1. Except for the low cloud value, the vertically compacted cloud

cover values were computed by assigning the terrain-following (AGL) 3DNEPH

layer cloud cover values to the corresponding constant altitude (MSL) layers

in the case of elevated terrain. In order to compute horizontal averages, the

terrain-following 3DNEPH layer values were also remapped to equivalent con-

stant altitude layers. Horizontal averages and standard deviations were

computed over 5x5 grid points centered around the grid point closest to each

colocated radiosonde station, using a 1-2-1 weighted average in both direc-

tions. For the colocation study data was extracted from 3DNEPH boxes 43, 44,

45. For central gridpoints near box boundaries, averages and standard devia-

tions were computed over fewer than 25 points. The OSE used data in all

3DNEPH boxes between 30'N and 50°N.
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Appendix C: Error statistics of the bogus RH data

The bogus RH data was used in the moisture 01, with error statistics that

were estimated from the independent sample of the colocation study. Different

error statistics were used for February and June. The observational error

standard deviations (aN) were estimated from the RMS colocation errors (ac,

viz. Tables 6 and 8), using the relationship (Bergman, 1978, eq 12):

ON2 _ c2 _ aR
2

with an assumed RAOB error (OR) of 5%. This same RAOB error was used in the

moisture 01.

The vertical error correlations (Tables C.1 and C.2) were computed by

first computing a colocation error covariance matrix, using the colocation

errors of the EOF coefficients and the RH EOFs; the assumed RAOB error covari-

ance matrix was then subtracted, and correlations computed from the resulting

matrix. RAOB errors were assumed to be uncorrelated in the vertical,

resulting in an error matrix with nonzero elements only along the diagonal,

with a magnitude corresponding to a 5% error. The colocation error covariance

between two levels k,2 is related to the EOF coefficient errors by the fol-

lowing relationship:

15

rk'r, 2 m) Emk EmI

m-1

where cr,k denotes the colocation error of RH at level k, EE,m the colocation

error of EOF coefficient m, and Em,k the amplitude of EOF m at level k. It

was assumed here that the coefficient errors of two EOFs are uncorrelated

(which is strictly true only for the dependent sample). The above equation

follows from the property of the EOFs that any RH profile may be written as:

15

RYk - RHk +  j m Emk

m-1
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where RHk is the climatological mean profile, and em the coefficient of the

mth EOF.

Finally, horizontal error correlation functions were derived from colo-

cation errors. Error correlations were computed for distance bins of 200 km

width. Results showed anomalously high values for the surface level out to

large distances which were caused by a diurnally varying bias. Because of

this bias, bogus RH values at the surface were not used, and curves were

fitted to error corraltion values that were averaged over the remaining

levels. The fitted curves were of the form exp(-d/k), where d is the separa-

tion distance, and k is 290 km (230 km) for February (June).
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Fig. 2: Mean and standard deviation relative humidity profiles for EOF-All
for February (a) and June (b).
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Fig. 3: Mean (a,c) and standard deviation (b,d) relative humidity profiles

for EOF-Bands for February (a,b) and June (c,d). The curve labels
(1,2,3) refer to the three latitude bands (20°N-30°N, 30°N-40°N,

40°N-50°N).
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Fig. 4: Profiles of the first three EOFs for EOF-Al for February (a) and

June (b).
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